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Abstract. Estimating the values of the parameter estimates of econometric functions (maximum
likelihood functions or nonlinear least squares functions) are often challenging global optimization
problems. Determining the global optimum for these functions is necessary to understand economic
behavior and to develop effective economic policies. These functions often have flat surfaces or
surfaces characterized by many local optima. Classical deterministic optimization methods often do
not yield successful results. For that reason, stochastic optimization methods are becoming widely
used in econometrics. Selected stochastic methods are applied to two difficult econometric functions
to determine if they might be useful in estimating the parameters of these functions.
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1. Introduction

Least-squares and maximum likelihood are the two most frequently used methods
of estimating the parameters of econometric models. It is necessary to find the
global optima of these functions to successfully meet the least squares or maximum
likelihood criteria.

This paper briefly discusses some examples of the problems that arise in nonlin-
ear estimation in Section 2. These difficulties have encouraged economists to seek
optimization techniques other than deterministic methods. One set of techniques
which promise to mitigate some of these difficulties are random search methods.
The random search methods used in this research are discussed in Section 3. The
methods are applied to two econometric models which are known to be diffi-
cult to estimate. These applicatons are discussed in Sections 4–6. Conclusions are
presented in Section 7.

2. Why global optimization is useful

Estimating economic models requires finding the global optimum of a nonlinear
function. Suppose the economic model can be represented by

yt = f (xt , β) + et
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where yt is an observation of a dependent variable, xt is a vector of explanatory
variables, and β is a vector of parameters. The term et represents the sampling
error for observation t . The problem is to obtain estimates of β so that the res-
ulting model best predicts the behavior of whatever entity the model represents.
The two estimation methods most frequently used are least-squares and maximum
likelihood. The least squares estimator b is chosen to minimize

S(β) = [y − f(X, b)]′[y − f(X, b)]

where y = (y1, y2, . . . , yT )
′, X′ = (x1, x2, . . . , xT), f(X,b) =

(
f (x1,b),

f (x2,b) . . . f (xT,b)
)

, and the data consists of T observations.

The purpose of maximum likelihood estimation is to find the parameter estim-
ates that give the highest probability of generating the observed sample. Generally
it is assumed that the error terms are normally distributed with mean zero and
variance σ 2 such that the vector of error terms e = (e1, e2, . . . , eT )

′ ∼ N(0, σ 2I)
where I is an identity matrix. The likelihood function is given by

l(b, σ̂ 2) = 1

(2πσ̂ 2)T/2
exp

{
−[y − f(X,b)]′[y − f(X,b)]

2σ̂ 2

}

and the estimation problem is to find values of b and σ̂
2 that maximize l(b, σ̂ 2

). In
either the least squares case or the maximum likelihood case, the global optimiza-
tion value in required to meet the stated optimization criterion.

Nonlinear econometric functions often have features that make it difficult to
find the global optimum. Multiple optima or flat surfaces are common. The deriv-
atives of such functions can often be complex and difficult to derive. Numerical
derivative methods can fail due to truncation and round–off errors arising from the
use of floating point arithmetic. In some cases the function may not differentiable.
Deterministic optimization methods will not be very effective in such situations
and can fail completely. Random search methods do not require derivative in-
formation and are often used to replace deterministic methods in these cases. In
this research, we investigate how well random search methods can estimate two
difficult econometric functions.

3. The algorithms

This section presents the basic algorithms used in this research. The problem will
be to find the parameter values, x = (x1, x2, · · · , xn) that minimize a function
f (x). Each of the algorithms uses a random process to search in the parameter
space. The search is not totally random, however. Each algorithm is designed to
concentrate the search in promising regions where it seems likely that a minimum
exists. Portions of the search will be conducted outside those regions to try to avoid
becoming trapped at a local rather than global maximum.
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Two of the methods used, a genetic algorithm and an evolutionary strategy,
are based on a biological model. A third method, simulated annealing, is based
on an analogy from physics. These are discussed next, beginning with the genetic
algorithm.

3.1. GENETIC ALGORITHMS (GAS)

The description of a basic GA follows Schwefel (1995). The steps of the algorithm
are briefly discussed first and then are expanded immediately afterwards.
Step 0: (Initialization)

A given population consists of λ individuals. Each individual consists of n
genes, that determine the vitality, or fitness, for survival. Each gene is rep-
resented by a (binary) bit string that can be decoded into a coordinate value
of a parameter. Fitness is the value of the function at the point represented
by the gene.

Step 1: (Selection)
Two individuals are selected for reproduction with probabilities proportional
to their relative fitness in the current population.

Step 2: (Crossover)
Two offspring are produced by combining the genes of the parents. One of
these offspring will be chosen (at random) to join the next generation.
Steps 1 and 2 are repeated until λ individuals represent the next generation.

Step 3: (Mutation)
The individual bits of the genes may undergo further modification. Each bit
is assigned a small probability of reversing value.

Steps 1–3 are repeated for a given number of generations. The process is
terminated at that time unless some prior termination criteria has been met.
One prior termination criterion often used is to terminate if the improve-
ment in the best fitness value between successive generations is less than a
specified value.

The individual steps are now discussed in greater detail. A point x = (x1,

x2, · · · , xn) is represented by a binary bit vector in a GA called an individual. Each
individual is characterized by a number of genes where each gene corresponds to a
coordinate value of the point. The bit vector representation of the coordinate values
requires that the coordinate values be constrained to a range

ui � xi � vi .

A gene is represented by a bit vector of length l so that

ai = (ai1, ai2, · · · , ail)
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represents the i–th gene. The coordinate value, xi , of a parameter is determined by
a decoding such as

xi = ui + vi − ui

2k − 1

l∑
j=1

ai,j2j−1.

The individual is constructed by concatinating the genes into a single bit vector

a1a2 · · · an
of length nl.

3.1.1. Selection

This section discusses how individuals are selected to become members of the next
generation.

1. Compute the fitness of each individual k to be fk = −f (x1, x2, · · · , xn).
(assume for convenience that all fitness values fk are positive, else the fitness
values must be scaled).

2. Compute a fitness value for the entire population

F =
λ∑

j=1

fj .

3. Determine the probability that individual k will be selected for breeding

pk = fk/F

4. Determine the cumulative probability for each individual in the population
(j = 1, · · · , λ).

qj =
j∑

i=1

pi

5. Select a random variable, r, from a uniform distribution U(0, 1).
6. If r < q1 select individual 1, else select the individual for which qk−1 <

r < qk where 2 � k � λ. This process gives a high probability of selection
for individuals with good fitness values, a moderate probability of selection
of those individuals with average fitness values, and a low probability of
selection for individuals with poor fitness values. Note that this will allow
an individual to be selected more than once. Successful individuals will tend
to survive and reproduce while others tend to die out.
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3.1.2. Crossover

Certain individuals of the new generation are selected for reproduction (crossover).
The crossover process changes the bit vectors for the individuals chosen for mat-
ing. This process moves points through the parameter space. A description of the
crossover process follows:

1. For each individual in the population, do the following.
2. Randomly determine if a individual will be selected for mating. Let the prob-

ability of crossover be pc. Select a random value r from a uniform distribution
U(0, 1). If r < pc, the individual is selected for mating.

Randomly pair the individuals selected for mating (if a odd number have been
selected either drop one of those selected or add an additional individual to the list
of selected individuals). Suppose that one of these pairs is

(a1, a2, · · · , anl)

(b1, b2, · · · , bnl)
Select a random integer pos from the integers [1..nl − 1] and form two new indi-
viduals

(a1, a2, · · · , apos, bpos+1, · · · , bnl)

(b1, b2, · · · , bpos, apos+1, · · · , anl)

3.1.3. Mutation

Mutation is the other operation that causes changes in an individuals bit pattern.
Mutation may occur in individuals not selected for mating.

1. For every individual in the population do the following.
2. Every bit in an individual has a probability pm, usually very small, of mutat-

ing. Select a random value r from a uniform distribution U(0, 1). If r < pm,
switch the value of the bit. Repeat for every bit in the individual.

Dorsey and Mayer (1995) examined the performance of several optimization meth-
ods on a number of functions, including econometric functions. They conclude that
stochastic methods tend to perform better than deterministic methods on difficult
econometric functions. They considered a GA and a simulated annealing algorithm
in their research. One of the econometric functions they examined, a disequilibrium
model, is also considered in this paper. The data for the disequilibrium model and
the code for the GA can be found at
http://www.bus.olemiss.edu/dorsey/dorsey.htm. The simulated annealing algo-
rithm they used is that of Goffe et al. (1994) which is discussed in Section 3.3.
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3.2. EVOLUTION STRATEGIES (ESS)

The simplest ES strategy is one where a single parent produces a single offspring
and the individual with the best fitness value is the one that survives to the next
generation. This is designated as a (1 + 1) strategy. More elaborate strategies use
µ parents to produce λ offspring. The (µ+ λ) strategy creates a new population of
(µ + λ) individuals from which µ individuals with the best fitness values survive.
In this case it is possible for an individual to survive for a number of generations.
In the (µ, λ) strategy (λ > µ) offspring are produced but the next generation of µ
individuals is selected from the λ offspring with the best fitness values. In this case
no individual survives to the next generation. Unlike the GA, each of the µ parents
is given an equal probability of mating. The selection mechanism of the ES is in
the selection process of the individuals that survive to the next generation not in
the selection process for mating. This research used (µ + λ) and (µ, λ) strategies.

The evolutionary strategy represents an individual as a pair of floating point
vectors (x, σ ) . The vector x is a point in the search space and σ is a vector of
standard deviations. Movement from point xt+1 to xt is generated by

xt+1 = xt + N (0, σ )

where N (0, σ ) is a vector of independent normally distributed random numbers
with standard deviations σ . Like GAs, ESs also incorporate crossover and muta-
tion.

3.2.1. Crossover

Two individuals are randomly selected for mating

(x1, σ 1) =
(
(x1

1 , · · · , x1
n)(σ

1
1 , · · · , σ 1

n )
)

and

(x2, σ 2) =
(
(x2

1 , · · · , x2
n)(σ

2
1 , · · · , σ 2

n )
)

There are two types of crossover

− create a new offspring

(x, σ ) =
(
(x

q1
1 , · · · , xqnn )(σ

q1
1 , · · · , σ qn

n )
)

where qi = 1 or 2 with equal probability, or
− Create a new offspring with

(x, σ ) =
(
((x1

1 + x2
1)/2, · · · , (x1

n + x2
n)/2),

((σ 1
1 + σ 2

1 )/2, · · · , (σ 1
n + σ 2

n )/2))
)



GLOBAL OPTIMIZATION OF ECONOMETRIC FUNCTIONS 279

3.2.2. Mutation

The offspring undergo mutation through

σ ′ =σ exp
(
N(0,%

)
x′ =x + N(0, σ ′)

where % is a factor that is adjusted during execution to expand or contract the
effective search region.

These steps are repeated for a given number of generations or until a termination
criterion is met. A possible termination criterion could be the following: suppose
that F(w) is the worst fitness value in a generation and F(b) is the best value.
Terminate the process if |F(b) − F(w)| < ε for a minimization problem.

One global optimization method used in this study was the evolutionary strategy
of Schwefel (1995). This optimization methodology is similar to GAs but does not
seem to be as well known, particularly in the United States. It was developed as a
method for continuous optimization problems while GAs developed as a general
optimization technique Michalewicz (1996). An immediate distinction between the
two is that ESs use floating point vectors where classical GAs use binary vectors.

The code for this algorithm is contained in a disk accompanying Schwefel’s
book and a hardcopy version of the code is presented in the book itself.

3.3. SIMULATED ANNEALING (SA)

This optimization technique relies on analogy from physics rather than the biolo-
gical sciences. The atoms of liquid metal move about freely but tend to lose this
mobility as the metal is cooled. If the cooling process occurs slowly the atoms will
tend to align with one another producing a stable piece of solid metal (the metal
will be in a minimum energy state). If the cooling takes place too quickly the result
will be either an amorphous or a brittle piece of metal (it will be trapped at a energy
state higher than the minimum state). Annealing is the process of slowly reducing
the temperature of the metal to achieve the minimum energy state. In terms of a
global optimization algorithm the local minima (high energy states) are avoided by
slow cooling to reach the global minimum (the minimum energy state).

SAs differ from GAs and ESs in how search points are generated and in the
mechanism of deciding whether to move to a new point or not. The heart of the
simulated annealing algorithm lies in the decision of whether to move from one
point to another in the parameter space. Suppose the search has lead to a point x
and the decision is whether to stay at that point or to move to x′. The decision will
be to move to x′ with probability




1 if f (x′) < f (x)
1
C

exp

(
−f (x′)−f (x)

T

)
otherwise
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where C is a normalizing constant and the parameter T represents temperature. In
the SA terminology these are called uphill and downhill moves. Downhill moves
are always allowed while uphill moves are occasionally permitted. The latter fea-
ture will hopefully allow the algorithm to avoid becoming trapped at a local min-
umum. Note that when the temperature is high, as it is at the beginning of the
algorithm, the probability of an uphill move will be large. So initially the algorithm
will search widely throughout the parameter space. The temperature is decreased
periodically so that when the temperature is very low the probability of an uphill
move will be very small. This should occur at the end of the algorithm when it is
hoped the search will be concentrated at the global minimum.

New points in the search space are generated by x′ = x + d · z where z is a
vector symmetric random variables with mean zero. The factor d is used to control
the step sizes of movements in the parameter space. This factor will be reduced
during the course of the algorithm, so that the step sizes will tend to be very small
at the end where the search will be concentrated at what is hoped to be the global
minimum.

Schwefel (1995) gives a nice summary of a basic SA. The algorithm consists
of an inner and an outer loop. The system is allowed to achieve thermal equilib-
rium in the inner loop. After equilibrium has been obtained in the inner loop, the
temperature and stepsize parameters are reduced in the outer loop.
Step 0: (Initialization)

Choose a starting position x(0,0),
an initial temperature T 0, and
an initial stepsize parameter d0.

Set x∗ = x̂ = x(0,0), k = 0, and l = 0.

Step 1: (inner loop)
x(k,l) = x̂ + d(k)z
If f (x(k,l)) < f (x∗) set x∗ = x(k,l)

If f (x(k,l)) < f (x̂), go to Step 3, else draw a uniform random number, χ
from the interval [0, 1],
If χ < 1

c
exp

(
f (x(k,l))−f (x̂)

T (k)

)
, go to Step 3.

Step 2: (check for equilibrium)
If f (x∗) has not been improved within the last N trials, go to step 4.

Step 3: (end inner loop)
Set x̂ = x(k, l), set l = l + 1, go to Step 1.

Step 4: (Termination check)
If (T (k) � ε), end the search with result x∗
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Figure 1. The Nelder–Mead simplex in two dimensions

Step 5: (Cooling, outer loop)
Set x(k,l) = x∗, x̂ = x∗.
Set T (k+1) = αT (k), 0 < α < 1.
Set d(k+1) = βd(k), 0 < β < 1.
Set l = 1, k = k + 1, go to Step 1.

Goffe et al. (1994) have coded a simulated annealing algorithm and applied it to
a simple econometric model. This version of the algorithm has a very nice output
interface that allows a user to view the progress of the algorithm. If the progress
does not seem satisfactory the user can stop the program and change the parameters
of the algorithm to see if the change improves performance. This feature is most
useful. The code for this implementation can be found at
http://netlib2.cs.utk.edu/opt/simann.f

3.3.1. The Numerical Recipies SA

Press et al. (1994) have combined a SA algorithm with the the Nelder–Mead sim-
plex (1965) algorithm. A simplex in an n dimensional parameter consists of (n+1)
points that do not lie on a hyperplane, together with every possible convex com-
bination of these points. An example of a simplex for a two dimensional parameter
space is shown in Fig. 1. We are only interested in the vertices of the simplex. The
Nelder–Mead algorithm is described next and will be followed by the a description
of the modifications of Press et al.

Let

xh be the vertex with the highest function value,
xs be the vertex with the second highest function value,
xl be the vertex with the lowest function value function value,
xc be the centroid of all vertices except xh ,

The location of a new vertex is determined as follows:
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1. Reflect xh through the centroid using some reflection factor α > 0, that is
compute

x0 = (1 + α)xc − αxh.

2. If f (xl) � f (x0) � f (xh) then replace xh with x0 and return to step 1.
3. If f (x0) < f (xl) expand the simplex using an expansion factor λ > 1 and

compute
x00 = λx0 + (1 − λ)xh.

1. If f (x00) < f (xl), replace xh with x00 and return to step 1.
2. If f (x00) > f (xl), replace xh with x0 and return to step 1.

3. If f (x0) > f (xs) contract the simplex. Let β have some value between 0 and
1.

1. If f (x0) < f (xh), compute

x00 = βx0 + (1 − β)xc.

2. If f (x0) > f (xh), compute

x00 = λxh + (1 − λ)xh.

3. If f (x00) < f (xh) and f (x00) < f (x0), replace xh with x00 and return
to step 1.

4. If f (x00) > f (xh) or f (x00) < f (x0), reduce the size of the simplex
and return to step 1.

Press et al. consider the standard SA algorithm to be inefficient in that it may
allow uphill moves when perfectly good downhill moves are available. This situ-
ation can arise when the algorithm is trying to maneuver through a narrow valley or
when it is near a minimum. Consider any step in the Nelder–Mead algorithm where
a comparison is made. At such a point, a positive random perturbation proportional
to the temperature is added to the function value of any previously computed vertex
and a positive random perturbation proportional to the temperature is subtracted
from the function value computed at the proposed new vertex. Note that when the
temperature is small, as it would be near the end of the algorithm, that the perturba-
tions will have almost no effect and the Nelder–Mead algorithm will predominate.
Adding and subtracting positive quantities from the function values computed at
the vertices assures that downhill moves are always allowed and that uphill moves
are occasionally allowed hence the similarity to SA.

3.4. A HYBRID METHOD (AS)

Stochastic optimization methods can serve as front ends for traditional determin-
istic optimization methods. In this case the stochastic method serves to provide the
deterministic methods with, hopefully, good starting points.
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The Royal Statistical Society at one time published a series of statistical al-
gorithms in its journal Applied Statistics. Algorithm AS 298 (Brooks, 1995) is
a hybrid minimization technique using simulated annealing and any minimiza-
tion routine supplied by the user. AS 298 uses all of the points visited at the
final temperature plus the best point found as starting points for the traditional
minimization routine. Algorithm AS 319 (Koval, 1997) serves as a user supplied
minimization routine in this research. Algorithm AS 319 is a variable metric quasi-
Newton method using approximate gradients computed using forward differences.
The author claims that the algorithm is designed to permit maximum likelihood
estimation of functions of complex form and has a reasonable chance of obtaining
the global optimum in every trial of a Monte Carlo simulation (Koval, 1997). The
AS algorithms can be located in the Applied Statistics folder at the Statlib web site
http://lib.stat.cmu.edu/.

4. A disequilibrium model

Economists usually assume that markets are in equilibrium, that is, that supply and
demand are equal. This is probably a reasonable assumption for many goods such
as commodities. However, given the time period over which much economic data
is collected (often a quarter of a year or longer), it is not possible to determine
whether the markets are in equilibrium. In some cases, such as the purchase of
housing, the market can be in disequilibrium for long periods of time. Disequi-
librium models present interesting and difficult estimation problems. The econo-
metrics of such functions was first studied by Fair and Jaffe (1972) and refined
by Fair and Kelejian (1974), Hartley and Mallela (1977), and Mayer (1989). Here
we concentrate on the formulation by Maddala and Nelson (1974) because it was
selected by Dorsey and Mayer (1995) as an item in a test suite of particularly
difficult optimization problems faced by econometricians.

Suppose that the demand equation is written as

Dt = X′
1tβ1 + ut ,

while the supply equation is

St = X′
2tβ2 + vt ,

where Dt is the quantity demanded, St is the quantity supplied, and ut and vt are
error terms. X1t and X2t are vectors of explanatory variables and β1and β2are
parameters to be estimated. X1t and β1both have the same length as do X2t and
β2. What makes the disequilibrium model interesting is that consumers cannot be
forced to buy more than they want nor can they buy more than is offered. So the
quantity actually purchased (Qt ) will be the lesser of supply or demand:

Qt = min(Dt, St ).
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What makes the problem even more interesting is that one may not be able to
determine whether the quantity purchased is from the supply equation or from the
demand equation. How, then, can the parameters β1and β2be estimated? One of the
models considered by Maddala and Nelson (1974) and Maddala (1983) and used
by Dorsey and Mayer (1995) is outlined in this section.

While the underlying model consists of two linear equations, the estimation
problem is a difficult nonlinear one. The nonlinearity arises because we cannot de-
termine whether a given value Qt applies to the supply or to the demand equation.
Instead we can determine only the probability that it came from one or the other
of the equations. The probability that the observed value is a point on the demand
equation is

πt = P(Dt < St)

= P(X′
1tβ1 + ut < X′

2tβ2 + vt )

= P(ut − vt < X′
2tβ2 − X′

1tβ1).

If the error terms are assumed to be independent and normally distributed, for
example, then

πt =
∫ (X′

2tβ2−X′
1tβ1)/σ

−∞
1√
2π

exp(−u2/2)du, (1)

where σ 2 = σ 2
1 + σ 2

2 . A similar relation holds for P(St < Dt). Define

f1(Qt) = 1√
2πσ1

exp
[
− 1

2σ 2
1

(Qt − X′
1tβ1)

2
]

f2(Qt) = 1√
2πσ2

exp
[
− 1

2σ 2
2

(Qt − X′
2tβ2)

2
]

F1(Qt) = 1√
2πσ1

∫ ∞

Qt

exp
[
− 1

2σ 2
1

(Dt − X′
1tβ1)

2
]
dDt

F2(Qt) = 1√
2πσ2

∫ ∞

Qt

exp
[
− 1

2σ 2
2

(St − X′
2tβ2)

2
]
dSt

Let g(Dt, St) be the joint density of D and S. If an observation is a point on the
demand equation, the conditional density of Qt is (??)

g(Qt | Qt = Dt) = f1(Qt)F2(Qt)

P (Qt = Dt)

= f1(Qt)F2(Qt)

πt

.
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and if the observation is a point on the supply equation,

g(Qt | Qt = St) = f2(Qt)F1(Qt)

P (Qt = St)

= f2(Qt)F1(Qt)

1 − πt

.

The unconditional density of Qt is

f (Qt) = g(Qt | Qt = Dt)P (Qt = Dt) + g(Qt | Qt)P (Qt = St)

= πt

f1(Qt)F2(Qt)

πt

+ (1 − πt)
f2(Qt)F1(Qt)

(1 − πt)

= f1(Qt)F2(Qt) + f2(Qt)F1(Qt)

The log-likelihood function then is

L =
T∑
t=1

log[f1(Qt)F2(Qt) + f2(Qt)F1(Qt)],

where T is the sample size. If it is assumed that the error terms are normally
distributed, then

h1t = Qt − X′
1tβ1

σ1
,

h2t = Qt − X′
2tβ2

σ2
,

f1t = 1√
2πσ1

exp(−h2
1t/2),

f2t = 1√
2πσ2

exp(−h2
2t/2),

F1t =
∫ ∞

h1t

1√
2π

exp(−u2/2)du,

F2t =
∫ ∞

h2t

1√
2π

exp(−u2/2)du,

L =
T∑
t=1

log(f1tF2t + f2tF1t ),

Note that while we desire to maximize the likelihood function, in practice we will
minimize the negative likelihood function. This approach allows us to speak in
terms of minimization, which is more common practice. The values that are repor-
ted in the subsequent tables, however, are the values of the likelihood function — in
the tables larger values are preferred to smaller values. Also note that the variance
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Table 1. Results for the disequilibrium model of housing starts reported by Dorsey and Mayer.
The original solution is that of Maddala and Nelson. GA solution 1 and GA solution 2 are
solutions reported by Dorsey and Mayer

Variable Original solution GA solution 1 GA solution 2

Demand constant 223.740 436.333 429.464

TT 2.520 0.457 10.615

SH −0.002 −0.035 −0.130

MR(−2) −0.90 0.178 0.328

Supply constant 15.550 5.058 7.788

TT −0.153 −0.164 −0.161

PDF(-1) 0.053 0.055 0.054

BG(-2) 0.053 0.056 0.055

MR(-1) 0.093 0.108 0.014

σ 2
1 350.000 2.090 0.321

σ 2
2 80.200 88.922 88.641

Log likelihood −459.618 −454.476 −452.449

terms are parameters that must be estimated. The estimates were constrained to lie
in an interval [−500, 500] for the β coefficients while the standard deviations were
constrained to lie in an interval [10−6, 500].

Table 1 gives parameter estimates and the value of the log likelihood function
for the disequilibrium model of housing starts considered by (??). The estimates
for the parameters of the model that are shown in this table are TT = time trend,
SH = stock of houses, MR(-2) = the mortgage rate lagged two periods, PDF(-1)=
moving average of private deposit flows lagged one period, BG(-2) = moving av-
erage of borrowing by savings and loan associations from the Federal Home Loan
Bank lagged two periods, and MR(-1) = the mortgage rate lagged one period. The
mortgage rate serves as the price variable in this model and this choice seemingly
has consequences that will be discussed later. The dependent variable Q is the
observed number of housing starts. The solution labeled Original solution contains
the best parameter estimates found by Maddala and Nelson. Maddala and Nelson
do not conclude that they have located the global maximum, and only report the
best solution. GA solution 1 is the best solution found by Dorsey and Mayer using
a genetic algorithm alone. GA solution 2 uses the previous estimates as a starting
point for a deterministic hill climbing routine. The hill climbing method gave a
modest improvement in the value of the likelihood function.

Dorsey and Mayer report that neither GA or the SA of Goffe et al. were suc-
cessful in locating the global optimum but that the GA tended to produce better
likelihood values. They also note that the GA required substantially more execution
time per run than did the SA. They ran 1000 SA trials in approximately the same
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time that it took to run 10 GA trials. We discuss our timing findings in Section 5.
Dorsey and Mayer also note the change in sign for the price variable in the demand
equation, MR(-2), between their solutions and that of Maddala and Nelson.

We should mention that our computation of the likelihood function using these
parameters differ from those reported in Table 1. We agree with the value of
−459.618 for the original solution of Maddala and Nelson. However we find a
value of −473.507 for the log likelihood function for GA solution 1 and a value of
−2695.775 for GA solution 2. The results for GA solutions 1 and 2 were computed
using our own code and the commercially vended statistical software package
RATS (Regression Analysis for Time Series). The standard errors of the coeffi-
cients produced by the RATS program are very large at this point (sufficiently large
that only one standard error led to a P value less than 0.5 and all but two P values
had values greater than 0.999, using a t distribution ). We found GA solution 1 to
have a poorly conditioned Hessian matrix at the point given. This makes it difficult
to interpret the sign change on the price variable mentioned above. Interestingly
a good result was obtained using GA solution 2 as a starting point for the RATS
maximization process. This result is shown in Table 2 in the column labeled GA
solution 2b with the standard errors in parenthesis. The results obtained by Maddala
and Nelson along with the standard errors of the parameter estimates are shown in
the column labeled Original solution.

We did not find that any of the random search methods terminated at the same
point more than once. This is consistent with the findings of Dorsey and Mayer.
Most of the solutions found by the random search methods produced likelihood
values worse than those shown in Table 1. We did find that the best solutions for
ES and SA produced better likelihood values than the original solution of Maddala
and Nelson. The solution produced by SA, however, also had a poorly conditioned
Hessian matrix. The same was true for the best solutions using the other random
search techniques except for the ES method. The best result using ES is given in
Table 3. It gave better results than those found in Table 1 except for GA solution
2 about which we have noted our suspicions. The Best solution found for the
disequilibrium model is also given in Table 3. This solution was found by lucky
accident rather than using any of the methods considered in this research. We used
Maddala and Nelson’s original solution as a starting point while using the RATS
maximum likelihood program. No other starting point when using RATS produced
such a result.

5. A test problem for the disequilibrium model using generated data

Maddala and Nelson (1974) also report difficulties in estimating this model. They
computed the probability that each observation would belong to the demand side
of the model using Eq. (1). They report that the “probabilities were uniformly low
(less than .1) except for a few observations in 1969 which showed probabilities in
the range .1 to .3. This shows that the entire period is possibly characterized by
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Table 2. Results for the disequlibrium model. The original solution is that of Maddala and
Nelson. GA solution 2b was found by using GA solution 2 as a starting point in the RATS
maximization softwere. Standard errors are in parentheses.

Variable Original solution GA solution 2b

Demand constant 223.740 458.899

TT 2.520 (1.45 ) 0.618 (0.349)

SH −0.022 (0.013) −0.039 (0.009)

MR(-2) −0.90 (0.062) 0.202 (0.052)

Supply constant 15.550 5.415

TT −0.153 (0.027) −0.164 (0.036)

PDF(-1) 0.053 (0.006) 0.056 (0.006)

BG(-2) 0.053 (0.003) 0.055 (0.004)

MR(-1) 0.093 (0.006) 0.108 (0.023)

σ 2
1 350.000 2.002

σ 2
2 80.200 88.906

Log likelihood −459.618 −454.411

Table 3. Results for the disequlibrium model. The best result from a stochastic search method
was from the ES shown in the column labeled Best ES solution. The best overall solution
found is shown in column Best solution. Standard errors are in parentheses.

Variable Best ES solution Best solution

Demand constant 441.658 273.597

TT 11.834 (2.508 ) 2.062 (1.287)

SH −0.145 (0.003) −0.016 (0.012)

MR(-2) 0.395 (0.099) −0.232 (0.022)

Supply constant 11.823 12.613

TT −0.156 (0.004) −0.156 (0.036)

PDF(-1) 0.055 (0.006) 0.053 (0.006)

BG(-2) 0.054 (0.004) 0.053 (0.004)

MR(-1) 0.098 (0.004) 0.097 (0.023)

σ 2
1 0.468 0.013

σ 2
2 89.246 90.935

Log likelihood −453.078 −451.741
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excess demand or that the model is poorly specified.” This is consistent with our
findings, also that the the probabilities show that almost all observations lie on the
demand curve (124 out of 126 observations using the best set of parameters that
we found).

Maddala and Nelson show particular concern with the adequacy of the price
variable used. They note that it is “doubtful that mortgage rates really measure
prices on the demand side, much less the supply side.” The lack of a meaningful
price variable also distinguishes the housing market from more conventional mar-
kets such as commodity markets. Bushels of corn are fairly homogeneous; houses
are quite different. It is meaningful to talk about a price for a bushel of corn and at
a particular time most bushels of corn will sell at the same price. Such cannot be
said for houses. The behavior of the model at the points where we obtained good
function values are typical of a mis-specified model; a poorly conditioned Hessian
matrix and suspiciously good values for the standard errors of a model.

Maddala and Nelson propose the following test problem using artificial data to
determine whether it is the data or the model that is causing the problem:

Dt = α0 + α1X1t + α2Pt−1 + ut ,

St = β0 + β1X2t + β2Pt−1 + vt ,

Pt − Pt−1

Pt−1
= 0.5

Dt − St

Dt

,

Qt = min(Dt, St ),

X1 ∼ U(0, 1) X2 ∼ U(0, 1) ut ∼ N(0, σ 2
u ) vt ∼ N(0, σ 2

v )

and

P0 = 1.0 σ 2
u = 0.0625 σ 2

v = 0.01,
α0 = 2.0 α1 = 1.0 α2 = −0.5,
β0 = 1.4 β1 = 1.0 β2 = 0.1,

where U() indicates the uniform distribution and N() the normal distribution. The
created sample size is n = 100.

The search space was constrained as follows: −50 < α1 < 50, −50 < βi <

50, 10−6 < σi < 50. All of the random search methods terminated at the same
point most of the time. ES and SA terminated at the same point all of the time.
We strongly suspect that this is the global optimum for the disequilibrium model
using generated data. The parameter estimates and standard errors are shown in
Table 4. Timing information and the percentage of successful runs are shown in
Table 5. We also computed the probability that an observed value would be on
the demand curve using Eq. (1). The estimated model predicts that 38 out of 100
observations should be on the demand equation. The generated data actually had 45
out of 100 observation on the demand equation. These results suggest that Maddala
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Table 4. Results for the disequlibrium model using generated data. Standard errors are in
parentheses.

Variable True value Estimates

α0 2.0 1.858

α1 1.0 1.198 (0.171)

α2 −0.5 −0.488 (0.123)

β0 1.4 1.342

β1 1.0 1.098 (0.060)

β2 0.1 0.138 (0.083)

σ 2
1 0.0625 0.0548

σ 2
2 0.01 0.01

Log-likelihood 50.612

Table 5. The number of successful trials and total time for the trials for each method in
estimating the disequlibrium model using generated data.

Method Successful trials Total time (s)

ES 100 out of 100 2802

GA 18 out of 20 262559

SA 100 out of 100 25159

NR 61 out of 100 16151

AS 70 out of 100 2504

and Nelson’s procedure is useful in estimating a disequilibrium model and that
mis-specification is the chief source of difficulty with the estimation process.

The results in Table 5 suggest that ES, GA, and SA all were very successful in
finding the global optimum. The GA method required substantially more execution
time than did any of the other methods and did not seem to be more reliable than ES
or SA. The large execution time required by the GA may be the result of the choice
of parameters used, but as noted previously, Dorsey and Mayer also found that GA
required far more time than SA. These estimates agree with those produced by
the RATS program. RATS was sensitive to the choice of starting point and these
results give some confidence that the global optimum has been found. It seems,
then, that Maddala and Nelson’s method successfully models disequilibrium phe-
nomena and that the techniques used in this research have most likely found the
global maximum.
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6. Garch models

Lately much effort has been devoted to the estimation of nonlinear time series
models. A class of models that has seen a great deal of use are those that model
changes in the variance of a time series. These models are useful in studying the
determinants of changes in the variance of such economic variables as the inflation
rate, exchange rates, and equity price variability for example.

A simple autoregressive model can be written as

yt =
k∑

i=1

βiyt−i + εt (2)

where y is the dependent variable, β a vector of parameters, and εt a normally
distributed error term with zero mean and constant variance. We consider, however,
the situation where the variance of the error term is not constant. Such may be the
case for inflation rates, exchange rates, and stock market indexes. The GARCH
model (Bollerslev, 1986) is a popular representation of such a situation, where the
error process is modeled by

εt = νt
√
ht

and νt is a random process with zero mean and variance equal to one.
A general model of the variance process is

ht = α0 +
p∑

i=1

αie
2
t−i +

q∑
j=1

γjht−i + δzt (3)

where zt is a vector of exogenous variables and

et = yt −
k∑

i=1

β̂iyt−i

and β̂i are estimates of the parameters of the autoregressive model. The log likeli-
hood function for such a model is (Bollerslev, 1986)

L = −T − 1

2
log(2π) − 1

2

T∑
t=k

(
log ht + e2

t

ht

)

where k is a value equal to the maximum lag in the system.
One of the interesting features of this optimization problem is that ht must be

positive definite. Negative values are not sensible mathematically or statistically.
One approach is to constrain all the parameters of the variance equation to be
positive (Enders, 1995). This is not desirable. This would require an increase in the



292 M.E. JERRELL AND W.A. CAMPIONE

value of any of the variables in the variance equation to always cause an increase
in the value of the variance. This places unreasonable restrictions on the behavior
of economic and financial systems.

There are other restrictions that the estimates must have so that the model will
be stable. The condition for this is that the roots of the characteristic equation

1 − γ1z − γ2z
2 − · · · − γpz

p = 0

have modulus greater than one, where γi are the coefficients of the lagged variance
terms in Equation (3).

For this research we investigated

yt =β0 + β1yt−1 + β2yt−2 + β3yt−3

ht =α0 + α1e
2
t−1 + α2e

2
t−2 + γ1ht−1 + γ2ht−2

+ δ1z1,t + δ2z1,t−1 + δ3z2,t + δ4z2,t−1 + δ5z3,t + δ6z3,t−1

where yt is the monthly return for the S&P 500 stock market index, z1,t is the ratio
of German to US short-term interest rates at time t , z2,t the ratio of UK to US
short-term interest rates at time t , and z3,t the ratio of Japanese to US short-term
interest rates. The short term interest rates are annualized nominal rates of interest
on three-month government securities. This model was suggested by Gerety and
Learchman (1996). They graciously supplied the data used. The data consisted of
251 observations.

We can apply some restriction on the estimates for this model using the stability
criteria on the roots of the characteristic equation. The roots will have modulus
greater than one if | γ2 |< 1, γ1 + γ2 < 1, and γ1 − γ2 > −1.

The hybrid method did not produce an acceptable result in any of 200 runs and
none of the results are reported here. The best results from RATS using random
starting points is shown in Table 6. GA did not produce any results better than
the RATS solution although we only ran 20 trials because of the amount of time
required (257 700 s). Further GA did not terminate at the same solution for any
of the 20 trials. Because GA did not produce better results than RATS GA output
is not shown here. NR(73 491 s for 200 runs), SA (122 553 s), and ES (67 896 s)
did not converge to the same point in any of 200 trials. The best result for NR was
marginally better than the RATS solution but had a set of parameter estimates that
produced a poorly conditioned Hessian matrix. It did prove useful in providing a
starting point for SA and ES. The best SA and ES estimates are shown in Table 7.
These values are the best overall and did not produce a poorly conditioned Hessian
matrix.

A fair amount of conflict exists between the signs and statistical significance
of the coefficients of SA and ES. The SA results indicate that the coefficient on
ht−2 is not significant while the ES results suggest that it is. The sign differs for
the coefficient on ht−1 between ES and SA while both are significant (although the
the SA coefficient is only marginally so). Likewise both models disagree about the
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Table 6. Results for the volatility model of United States equity returns by Gerety and Learch-
man. ES is the evolutionary strategy and SA the simulated annealing method. Both used a point
found by NR as as starting point. Standard errors are in parentheses.

Variable ES SA

Constant(mean equation) 0.007 0.005

US returns(−1) 0.243 (0.066) 0.305 (0.069)

US returns(−2) −0.112 (0.066) −0.152 (0.038)

US returns(−3) 0.021 (0.044) −0.050 (0.065)

Constant(variance equation) 0.001 0.001

ε2
t−1 −0.015 (0.053) 0.078 (0.134)

ε2
t−2 0.011 (0.037) −0.109 (0.023)

ht−1 1.323 (0.087) −0.048 (0.229)

ht−2 −0.601 (0.044) 0.534 (0.303)

Ger/US int. rate 0.004 (0.000) −0.001 (0.001)

Ger/US int.rate(−1) −0.005 (0.000) 0.000 (0.001)

UK/US int. rate −0.005 (0.001) 0.004 (0.000)

UK/US int. rate(−1) 0.005 (0.001) −0.003 (0.001)

J/US int. rate −0.001 (0.001) −0.002 (0.001)

J/US int. rate(−1) 0.001 (0.001) 0.002 (0.001)

Log likelihood 722.077 722.488

significance of the coefficient of the et−2 term. Also there is no agreement about
the significance of the coefficient of several of the interest rate terms.

7. Conclusions

We examined two difficult economic estimation problems. None of the results for
either model using actual data give much confidence that the global optimum has
been located for either problem. There is fairly strong evidence that the data used
to estimate the disequilibrium model has created a specification error. While it is
possible to find good function values in some cases it is not clear what this really
means. If the Hessian matrix is poorly conditioned, then the standard errors can be
quite unreliable and it may not be clear which coefficients are statistically signific-
ant. A disequilibrium model using generated data does suggest that the estimation
problems might well vanish with a properly specified model.

The GARCH model also proved difficult to estimate in the sense that the random
search methods did not terminate at the same point. We were able to establish some
points that gave function values superior to the deterministic method used in RATS.
Only two of these points were not associated with a poorly conditioned Hessian
matrix, however. This research suggests that it can be quite difficult to find the
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Table 7. Results for the volatility model of United States equity returns by Gerety and
Learchman using the RATS package. Standard errors are in parentheses.

Variable RATS

Constant(mean equation) 0.006

US returns(−1) 0.240 (0.054)

US returns(−2) −0.112 (0.071)

US returns(−3) 0.025 (0.057)

Constant(variance equation) 0.000

ε2
t−1 −0.014 (0.022)

ε2
t−2 0.010 (0.036)

ht−1 1.326 (0.248)

ht−2 −0.602 (0.233)

Ger/US int. rate 0.003 (0.001)

Ger/US int.rate(−1) −0.004 (0.001)

UK/US int. rate −0.003 (0.001)

UK/US int. rate(−1) 0.004 (0.001)

J/US int. rate −0.001 (0.001)

J/US int. rate(−1) 0.001 (0.001)

Log likelihood 719.622

global optimum of certain econometric functions and that such a task can provide
a fruitful and useful research agenda. The two best estimation methods used in
this research were the simulated annealing method and the evolutionary strategy.
The evolutionary strategy used less processor time than the simulated annealing
technique and seemed to provide results of equal quality.
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